Last Updated on : 2024-09-02 03:41:04download
CBU-NL is a low-power embedded Wi-Fi module that Tuya has developed. It consists of a highly integrated RF chip BK7231N and a few peripherals, and not only supports the AP and STA dual-network-connection manner but supports the Bluetooth LE network connection manner.
CBU-NL is built-in with a 32-bit MCU with a running speed of up to 120 MHz, 2Mbyte flash, and 256-KB RAM, so as to support the Tuya IoT cloud connection. The MCU’s specially extended instructions for processing signals can effectively implement audio encoding and decoding. Besides, it has rich peripherals, such as PWM, UART, and SPI. The five 32-bit PWM output makes the chip very suitable for high-quality LED control.
The CBU-NL dimensions are 15.8±0.35 mm (W)×20.3±0.35 mm (L) ×2.7±0.15 mm (H). The dimensions of CBU-NL are as follows:
Pin number | Symbol | I/O type | Function |
---|---|---|---|
1 | P14 | I/O | Common GPIO, which can be reused as SPI_SCK (Correspond to Pin 11 of the IC) |
2 | P16 | I/O | Common GPIO, which can be reused as SPI_MOSI (Correspond to Pin 12 of the IC) |
3 | P20 | I/O | Common GPIO (Correspond to Pin 20 of the IC) |
4 | P22 | I/O | Common GPIO (Correspond to Pin 18 of the IC) |
5 | ADC | I/O | ADC, which corresponds to P23 on the internal IC (Correspond to Pin 17 of the IC) |
6 | RX2 | I/O | UART_RX2, which corresponds to P1 on the internal IC. (Correspond to Pin 28 of the IC) |
7 | TX2 | I/O | UART_TX2, which is used for outputting logs and corresponds to P0 of the internal IC (Correspond to Pin 29 of the IC) |
8 | P8 | I/O | Support hardware PWM (Correspond to Pin 24 of the IC) |
9 | P7 | I/O | Support hardware PWM (Correspond to Pin 23 of the IC) |
10 | P6 | I/O | Support hardware PWM (Correspond to Pin 22 of the IC) |
11 | P26 | I/O | Support hardware PWM (Correspond to Pin 15 of the IC) |
12 | P24 | I/O | Support hardware PWM (Correspond to Pin 16 of the IC) |
13 | GND | P | Power supply reference ground |
14 | 3V3 | P | Power supply 3V3 |
15 | TX1 | I/O | UART_TX1, which is used for transmitting user data and corresponds to to Pin 27 of the IC. For the MCU solution, please refer to [CBx Module]. |
16 | RX1 | I/O | UART_RX1, which is used for receiving user data and corresponds to Pin 26 of the IC. For the MCU solution, please refer to [CBx Module]. |
17 | P28 | I/O | Common GPIO (Correspond to Pin 10 of the IC) |
18 | CEN | I/O | Reset pin, low-level reset, high-level active (internally pulled high) Docking IC-CEN (Correspond to Pin 21 of the IC) |
19 | P9 | I/O | Common GPIO (Correspond to Pin 25 of the IC) |
20 | P17 | I/O | Common GPIO, which can be reused as SPI_MISO (Correspond to Pin 14 of the IC) |
21 | P15 | I/O | Common GPIO, which can be reused as SPI_CS (Correspond to Pin 13 of the IC) |
Test point | CSN | I/O | Mode selection pin. If it is connected to the ground before being powered on, enter the firmware test mode. If it is not connected or connected to VCC before being powered on, enter the firmware application mode. Correspond to Pin 19 on the internal IC. |
Note:
P
indicates a power supply pin and I/O indicates an input/output pin.- For the MCU solution, please refer to CBx Module.
Parameter | Description | Minimum value | Maximum value | Unit |
---|---|---|---|---|
Ts | Storage temperature | -55 | 125 | ℃ |
VBAT | Power supply voltage | -0.3 | 3.9 | V |
ESD voltage (human body model) | TAMB-25℃ | -4 | 4 | KV |
ESD voltage (machine model) | TAMB-25℃ | -200 | 200 | V |
Parameter | Description | Minimum value | Typical value | Maximum value | Unit |
---|---|---|---|---|---|
Ta | Operating temperature | -40 | - | 85 | ℃ |
VBAT | Power supply voltage | 2.3 | 3.3 | 3.6 | V |
VOL | I/O low level output | VSS | - | VSS+0.3 | V |
VOH | I/O high level output | VBAT-0. 3 | - | VBAT | V |
Imax | I/O drive current | - | 6 | 20 | mA |
θ | Power supply slope | 100 | - | - | mV/ms |
Working status | Mode | Rate | Transmit power/receive | Average value | Peak value (Typical value) | Unit |
---|---|---|---|---|---|---|
Transmit | 11b | 11Mbps | +16dBm | 274 | 475 | mA |
Transmit | 11g | 54Mbps | +15dBm | 260 | 372 | mA |
Transmit | 11n | MCS7 | +14dBm | 254 | 360 | mA |
Receive | 11b | 11 Mbps | Constantly receive | 80 | 93 | mA |
Receive | 11g | 54 Mbps | Constantly receive | 80 | 93 | mA |
Receive | 11n | MCS 7 | Constantly receive | 80 | 93 | mA |
Working mode | Working status, Ta = 25°C | Average value | Maximum value (Typical value) | Unit |
---|---|---|---|---|
Quick network connection state (Bluetooth) | The module is in the fast network connection state and the Wi-Fi indicator flashes fast | 73 | 390 | mA |
Quick network connection state (AP) | The module is in the hotspot network connection state and the Wi-Fi indicator flashes slowly | 80 | 398 | mA |
Quick network connection state (EZ) | The module is in the fast network connection state and the Wi-Fi indicator flashes fast | 87 | 380 | mA |
Connected | The module is in connected state and the Wi-Fi indicator light is always on | 93 | 380 | mA |
Weakly connected | The module and the hotspot are weakly connected and the Wi-Fi indicator light is always on | 210 | 390 | mA |
Disconnected | The module is in disconnected state and the Wi-Fi indicator light is always off | 67 | 390 | mA |
Module disabled | The CEN pin of the module is connected to the ground. | 330 | - | μA |
Parameter | Description |
---|---|
Working frequency | 2.412 to 2.484 GHz |
Wi-Fi standard | IEEE 802.11 b/g/n (channels 1 to 14) |
Data transmission rate | 11b: 1, 2, 5.5, 11 (Mbps) 11g: 6, 9, 12, 18, 24, 36, 48, 54 (Mbps) 11n: HT20 MCS0-7 |
Antenna type | PCB antenna |
Parameter | Minimum value | Typical value | Maximum value | Unit |
---|---|---|---|---|
Average output power, 802.11b CCK Mode 11M | - | 16 | - | dBm |
Average output power, 802.11g OFDM Mode 54M | - | 15 | - | dBm |
Average output power, 802.11n OFDM Mode MCS7 (HT20) | - | 14 | - | dBm |
Frequency error | -20 | - | 20 | ppm |
Parameter | Minimum value | Typical value | Maximum value | Unit |
---|---|---|---|---|
PER<8%, RX sensitivity, 802.11b DSSS Mode 11M | - | -87 | - | dBm |
PER<10%, RX sensitivity, 802.11g OFDM Mode 54M | - | -74 | - | dBm |
PER<10%, RX sensitivity, 802.11n OFDM Mode MCS7 (HT20) | - | -72 | - | dBm |
PER<10%, RX sensitivity, Bluetooth LE 1M | - | -93 | - | dBm |
Parameter | Minimum value | Typical value | Maximum value | Unit |
---|---|---|---|---|
Working frequency | 2402 | - | 2480 | MHz |
Air rate | - | 1 | - | Mbps |
TX power | -20 | 6 | 20 | dBm |
Frequency error | -150 | - | 150 | kHz |
Parameter | Minimum value | Typical value | Maximum value | Unit |
---|---|---|---|---|
RX sensitivity | - | -93 | - | dBm |
Maximum RF signal input | -10 | - | - | dBm |
Inter-modulation | - | - | -23 | dBm |
Co-channel suppression ratio | - | 10 | - | dB |
The CBU-NL module uses the PCB antenna.
To ensure optimal Wi-Fi performance when the Wi-Fi module uses an onboard PCB antenna, it is recommended that the antenna be at least 15 mm away from other metal parts.
To prevent an adverse impact on the antenna radiation performance, avoid copper or traces within the antenna area on the PCB.
The PCB dimensions are 15.8±0.35 mm (W)×20.3±0.35 mm (L) ×1.0±0.1 mm (H).
Recommended CBU-NL footprint:
The area indicated as keep-out in the diagram above does not require tinning and should not have any traces routed through it.
For the modules that can be packaged with the SMT or in the in-line way, you can select either of them according to the PCB design solutions of customers. If a PCB is designed to be SMT-packaged, package the module with the SMT. If a PCB is designed to be in-line-packaged, package the module in an in-line way. After being unpacked, the module must be soldered within 24 hours. Otherwise, it needs to be put into the drying cupboard where the relative humidity is not greater than 10%; or it needs to be packaged again under vacuum and the exposure time needs to be recorded (the total exposure time cannot exceed 168 hours).
Storage conditions for a delivered module:
The moisture-proof bag must be placed in an environment where the temperature is below 40°C and the relative humidity is lower than 90%.
The shelf life of a dry-packaged product is 12 months from the date when the product is packaged and sealed.
There is a humidity indicator card (HIC) in the packaging bag.
The module needs to be baked in the following cases:
Baking settings:
In the whole production process, take electrostatic discharge (ESD) protective measures.
To guarantee the passing rate, it is recommended that you use the SPI and AOI to monitor the quality of solder paste printing and mounting.
Select a proper soldering manner according to the process. For the SMT process, please refer to the recommended oven temperature curve of reflow soldering. For the wave soldering process, please refer to the recommended oven temperature curve of wave soldering. There are some differences between the set temperatures and the actual temperatures. All the temperatures shown in this module datasheet are obtained through actual measurements.
Manner 1: SMT process (Recommended oven temperature curve of reflow soldering)
Set oven temperatures according to the following curve.
A: Temperature axis
B: Time axis
C: Liquidus temperature: 217 to 220°C
D: Ramp-up slope: 1 to 3°C/s
E: Duration of constant temperature: 60 to 120s; the range of constant temperature: 150 to 200°C
F: Duration above the liquidus: 50 to 70s
G: Peak temperature: 235 to 245°C
H: Ramp-down slope: 1 to 4°C/s
Note: The above curve is just an example of the solder paste SAC305. For more details about other solder pastes, please refer to Recommended oven temperature curve in the solder paste specifications.
Manner 2: Wave soldering process (Oven temperature curve of wave soldering)
Set oven temperatures according to the following temperature curve of wave soldering. The peak temperature is 260°C±5°C.
Suggestions on oven temperature curve of wave soldering | Suggestions on manual soldering temperature | ||
---|---|---|---|
Preheat temperature | 80 to 130 °C | Soldering temperature | 360±20°C |
Preheat time | 75 to 100s | Soldering time | <3s/point |
Peak contact time | 3 to 5s | NA | NA |
Temperature of tin cylinder | 260±5°C | NA | NA |
Ramp-up slope | ≤2°C/s | NA | NA |
Ramp-down slope | ≤6°C/s | NA | NA |
Product number | MOQ (pcs) | Shipping packaging method | The number of modules per reel | The number of reels per carton |
---|---|---|---|---|
CBU-NL | 4400 | Tape reel | 1100 | 4 |
FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate this device.
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Note: This device has been tested and found to comply with the limits for a Class B digital device, according to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This device generates, uses, and can radiate radio frequency energy and, if not installed and used following the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.
If this device does cause harmful interference to radio or television reception, which can be determined by turning the device off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
Radiation Exposure Statement
This device complies with FCC radiation exposure limits set forth for an uncontrolled rolled environment. This device should be installed and operated with a minimum distance of 20cm between the radiator and your body.
Important Note
This radio module must not be installed to co-locate and operate simultaneously with other radios in the host system except following FCC multi-transmitter product procedures. Additional testing and device authorization may be required to operate simultaneously with other radios.
The availability of some specific channels and/or operational frequency bands are country dependent and are firmware programmed at the factory to match the intended destination. The firmware setting is not accessible by the end-user.
The host product manufacturer is responsible for compliance with any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.
The end-user manual shall include all required regulatory information/warnings as shown in this manual, including “This product must be installed and operated with a minimum distance of 20 cm between the radiator and user body”.
This device has got an FCC ID: 2ANDL-CBU-NL. The end product must be labeled in a visible area with the following: “Contains Transmitter Module FCC ID: 2ANDL-CBU-NL”.
This device is intended only for OEM integrators under the following conditions:
The antenna must be installed such that 20cm is maintained between the antenna and users, and the transmitter module may not be co-located with any other transmitter or antenna.
As long as the 2 conditions above are met, further transmitter tests will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.
Declaration of Conformity European Notice
Hereby, Hangzhou Tuya Information Technology Co., Ltd declares that this module product is in compliance with essential requirements and other relevant provisions of Directive 2014/53/EU,2011/65/EU. A copy of the Declaration of conformity can be found at https://www.tuya.com.
This product must not be disposed of as normal household waste, in accordance with the EU directive for waste electrical and electronic equipment (WEEE-2012/19/EU). Instead, it should be disposed of by returning it to the point of sale, or to a municipal recycling collection point.
The device could be used with a separation distance of 20cm from the human body.
Is this page helpful?
YesFeedbackIs this page helpful?
YesFeedback